1. Which numbers match the number word?
sixteen
A 1 ten and 3 ones
B 0 tens and 6 ones
C $\quad 10$ and 6
D 10 and 7
2.For which addition equation can you make a 10 to add? Choose all that apply.
$\square \quad 13+15=$?
$\square \quad 49+28=$?
$\square \quad 20+47=$?
$\square \quad 45+35=$?
2. Complete the sentence.

Write greater than, less than, or equal to.
Then write >, <, or = .

31 is \qquad 43.43

1. Maya has 45 markers and 54 crayons. Which shows the correct way to compare the number of markers and the number of crayons?
A $54<45$
C $\quad 45<54$
B $\quad 45>54$
D $45=54$
2. A store has 20 basketballs.

It has 10 footballs.
Which equation shows how many more basketballs than footballs the store has?

A $20+10=30$
B $\quad 20-10=10$
C $20+20=40$
D $20-20=0$
3. Use the partial hundred chart to solve.

Janet has 43 stickers. She gives away 10 stickers. How many stickers does she have left?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

\qquad
\qquad stickers

1. Which equation is true?

A $\quad 5+3=6+1$
B $4+4=5+5$
C $6=15-8$
D $13-5=14-6$
2. Emma makes this drawing to model an addition problem. Which problem does she model?

A $17+19=$?
B $\quad 27+9=$?
C $10+29=$?
D $10+6=$?
3. Julio wants to add $6+7$.

Write a doubles fact to help him solve the doubles-plus-1 fact.
$]^{+}=$
So, $6+7=$ \qquad
\qquad

(22) Vocabulary

I. You can use addition to solve subtraction problems.
$80-50=?$
Think: 50 plus what number equals 80 ? 50 + ? = 80

Use the hundred chart.
Start at 50. Count by IOs.
How many IOs do you count?
\qquad
$50+30=80$.
So, $80-50=$ \qquad .

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

2. Use addition to solve each subtraction problem. Use the hundred chart to help.

$$
40+20=60
$$

so $60-40=$ \qquad .
$30+\ldots=40$,
so $40-30=$ \qquad .
$20+\square=50$,
so $50-20=$ \qquad $60+\ldots=80$,
so $80-60=$ \qquad

On the Back!

3. Explain how to use addition and a hundred chart to find $90-70$.
\qquad

(22) Vocabulary

I. $74-10=$?

You can subtract IO on a hundred chart.

41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

You can also use mental math to subtract 10 .
Subtract I from the tens digit.
$74-10=$
2. Use mental math to solve.

$$
\begin{aligned}
& 63-10=\% \\
& 86-10=
\end{aligned} \quad 51-10=
$$

\qquad

On the Back!

3. Write five two-digit numbers. Then use mental math to subtract 10 from each number. Write and solve each equation.
\qquad

(22) Vocabulary

I. You can use different strategies to solve a subtraction problem.

To subtract, you can think addition.
$90-70=$?
Think:
$70+?=90$
$70+20=90$
So, $90-70=$ \qquad .

To subtract, you can count back on a number line.
$90-20=?$

$$
90-20=
$$

\qquad
2. Use the strategy you think works best to solve each problem.

$$
90-60=9 \quad 70-50=
$$

\qquad
$70-30=$ \qquad
$60-20=$ \qquad

On the Back!

3. Draw a number line to subtract $70-20$. How did you solve the problem? Explain.
